Two-Step Biometrics Using Electromyogram Signal Based on Convolutional Neural Network-Long Short-Term Memory Networks

نویسندگان

چکیده

Electromyogram (EMG) signals cannot be forged and have the advantage of being able to change registered data as they are characterized by waveform, which varies depending on gesture. In this paper, a two-step biometrics method was proposed using EMG based convolutional neural network–long short-term memory (CNN-LSTM) network. After preprocessing signals, time domain features LSTM network were used examine whether gesture matched, single performed if matched. biometrics, converted into two-dimensional spectrogram, training classification through CNN-LSTM Data fusion recognition in form an AND. The experiment Ninapro signal method, results showed 83.91% performance 99.17% performance. addition, false acceptance rate (FAR) observed been reduced 64.7% fusion.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network

 Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...

متن کامل

Long short-term memory based convolutional recurrent neural networks for large vocabulary speech recognition

Long short-term memory (LSTM) recurrent neural networks (RNNs) have been shown to give state-of-the-art performance on many speech recognition tasks, as they are able to provide the learned dynamically changing contextual window of all sequence history. On the other hand, the convolutional neural networks (CNNs) have brought significant improvements to deep feed-forward neural networks (FFNNs),...

متن کامل

Stacked Long Short-term Memory Neural Networks

In this paper, we describe a novel approach to generate conference call-for-papers using Natural Language Processing and Long Short-Term Memory network. The approach has been successfully evaluated on a publicly available dataset.

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11156824